Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(1-Allyl-2-oxoindolin-3-ylidene)benzohydrazide

Abdulsalam Alsubari,^a Ahmed Moussaif,^a Hafid Zouihri,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 21 June 2010; accepted 25 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 15.5.

In the title compound, $C_{18}H_{15}N_3O_2$, the dihedral angle between the ring systems is 15.1 (1)°. The amino H atom is hydrogen bonded to the exocyclic O atom of the five-membered ring, forming an *S*(6) motif.

Related literature

For the use of the title compound as the starting reactant for the synthesis of other heterocyclic systems, see: Alsubari *et al.* (2009). For a related structure, see: Ali *et al.* (2005a,b).

Experimental

Crystal data C₁₈H₁₅N₃O₂

 $M_r = 305.33$

Monoclinic, $P2_1/c$ a = 7.5921 (2) Å b = 15.1968 (4) Å c = 12.8716 (3) Å $\beta = 94.481$ (2)° V = 1480.53 (7) Å ³	Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.35 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Bruker X8 APEXII diffractometer 17477 measured reflections	2343 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.108$ S = 1.003286 reflections

3286 independent reflections

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.18~\text{e}~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.21~\text{e}~\text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

212 parameters

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3···O1	0.88 (2)	1.98 (2)	2.721 (2)	141 (2)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2174).

References

- Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005*a*). Acta Cryst. E**61**, o3285– o3286.
- Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005b). Acta Cryst. E61, o3287o3288.

Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). *ARKIVOC*, **xii**, 337–346. Barbour, L. J. (2001). *J. Supramol. Chem.* **1**, 189–191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supplementary materials

Acta Cryst. (2010). E66, o1905 [doi:10.1107/S1600536810024918]

N'-(1-Allyl-2-oxoindolin-3-ylidene)benzohydrazide

A. Alsubari, A. Moussaif, H. Zouihri, E. M. Essassi and S. W. Ng

Comment

An earlier study reports the synthesis of oxindole derivatives bearing an oxazolidin-2-one sub-unit. The title Sciff base (Scheme I) is the starting reactant for the synthesis of other heterocyclic systems (Alsubari *et al.*, 2009). We have previously determined the crystal structure of two modifications of the Schiff base derived by condensing isatin and benzoylhydrazine. In both, the amino unit of the five-membered ring functions as a hydrogen bond donor to carbonyl group of an adjacent molecule to generate a chain structure. Meanwhile, the amino –NH– unit forms an intramolecular hydrogen bond to the –C(=O)– unit of the five-membered ring (Ali *et al.*, 2005*a*, 2005*b*). The molecule of $C_{18}H_{15}N_3O_2$ (Fig, 1) has a phenyl ring connected to a nine-membered fused-ring through the three-atom –C(=O)–N(H)–N=unit, whose amino H-atom is hydrogen bonded to the carbonyl group of the fused-ring. The two ring systems are aligned at 15.1 (1) °.

Experimental

1-Allylindoline-2,3-dione (0.5 g, 2.7 mmol) and benzoyl hydrazine (0.36 g, 2.7 mmol) were heated in ethanol (20 ml) for 2 h. The solvent was evaporated and the yellow solid was recrystallized from ethanol in 90% yield.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

The amino H-atom was located in a difference Fourier map; the N–H distance was restrained to 0.86±0.01 Å; the temperature factor of this hydrogen atom was freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of $C_{18}H_{15}N_3O_2$ at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

N'-(1-Allyl-2-oxoindolin-3-ylidene)benzohydrazide

Crystal data

C ₁₈ H ₁₅ N ₃ O ₂	F(000) = 640
$M_r = 305.33$	$D_{\rm x} = 1.370 {\rm ~Mg} {\rm ~m}^{-3}$

supplementary materials

Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 7.5921 (2) Å
<i>b</i> = 15.1968 (4) Å
<i>c</i> = 12.8716 (3) Å
$\beta = 94.481 \ (2)^{\circ}$
$V = 1480.53 (7) \text{ Å}^3$
Z = 4

Data collection

Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3004 reflections
$\theta = 2.7 - 25.0^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 293 K
Prism, yellow
$0.35 \times 0.30 \times 0.20 \text{ mm}$

Bruker X8 APEXII diffractometer	2343 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.059$
graphite	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
φ and ω scans	$h = -9 \rightarrow 9$
17477 measured reflections	$k = -19 \rightarrow 19$
3286 independent reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.108$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0463P)^2 + 0.3757P]$ where $P = (F_o^2 + 2F_c^2)/3$
3286 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
212 parameters	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.63773 (15)	0.55475 (7)	0.60381 (8)	0.0315 (3)
O2	0.68617 (16)	0.66838 (8)	0.24350 (8)	0.0353 (3)
N1	0.76855 (17)	0.41763 (9)	0.62121 (10)	0.0271 (3)
N2	0.75597 (16)	0.53877 (8)	0.38503 (9)	0.0248 (3)
N3	0.67263 (17)	0.61477 (9)	0.40734 (10)	0.0259 (3)
H3	0.638 (2)	0.6205 (11)	0.4710 (14)	0.034 (5)*
C1	0.8544 (2)	0.35920 (10)	0.55565 (12)	0.0261 (3)
C2	0.9222 (2)	0.27683 (11)	0.57850 (13)	0.0318 (4)
H2	0.9162	0.2518	0.6441	0.038*
C3	1.0002 (2)	0.23266 (11)	0.49925 (14)	0.0342 (4)
H3A	1.0454	0.1765	0.5120	0.041*

C4	1.0126 (2)	0.27008 (11)	0.40166 (14)	0.0338 (4)
H4	1.0683	0.2395	0.3509	0.041*
C5	0.9423 (2)	0.35293 (11)	0.37944 (12)	0.0292 (4)
H5	0.9496	0.3781	0.3141	0.035*
C6	0.86100 (19)	0.39725 (10)	0.45682 (12)	0.0248 (3)
C7	0.7178 (2)	0.49230 (11)	0.56872 (12)	0.0258 (3)
C8	0.7558 (2)	0.40781 (12)	0.73353 (12)	0.0306 (4)
H8A	0.7490	0.3458	0.7505	0.037*
H8B	0.6484	0.4359	0.7529	0.037*
C9	0.9114 (2)	0.44791 (11)	0.79466 (12)	0.0302 (4)
Н9	1.0233	0.4259	0.7850	0.036*
C10	0.8980 (3)	0.51229 (13)	0.86094 (14)	0.0418 (5)
H10A	0.7876	0.5354	0.8720	0.050*
H10B	0.9988	0.5350	0.8971	0.050*
C11	0.77560 (19)	0.48267 (10)	0.46041 (11)	0.0238 (3)
C12	0.6459 (2)	0.67879 (11)	0.33277 (11)	0.0255 (3)
C13	0.5594 (2)	0.76046 (10)	0.36850 (11)	0.0254 (3)
C14	0.5437 (2)	0.78064 (11)	0.47319 (12)	0.0300 (4)
H14	0.5883	0.7420	0.5248	0.036*
C15	0.4623 (2)	0.85771 (12)	0.50059 (13)	0.0351 (4)
H15	0.4523	0.8708	0.5705	0.042*
C16	0.3957 (2)	0.91536 (11)	0.42413 (14)	0.0339 (4)
H16	0.3399	0.9669	0.4427	0.041*
C17	0.4119 (2)	0.89656 (11)	0.32019 (13)	0.0338 (4)
H17	0.3677	0.9356	0.2689	0.041*
C18	0.4937 (2)	0.81987 (11)	0.29260 (13)	0.0313 (4)
H18	0.5051	0.8077	0.2226	0.038*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0376 (6)	0.0279 (6)	0.0296 (6)	0.0016 (5)	0.0074 (5)	-0.0031 (5)
O2	0.0445 (7)	0.0378 (7)	0.0243 (6)	0.0041 (6)	0.0065 (5)	0.0008 (5)
N1	0.0309 (7)	0.0272 (7)	0.0234 (6)	-0.0021 (6)	0.0028 (5)	-0.0006 (5)
N2	0.0254 (7)	0.0229 (7)	0.0258 (6)	-0.0022 (5)	0.0005 (5)	-0.0037 (5)
N3	0.0325 (7)	0.0226 (7)	0.0230 (7)	0.0006 (6)	0.0036 (5)	-0.0020 (6)
C1	0.0244 (8)	0.0247 (8)	0.0286 (8)	-0.0056 (7)	-0.0011 (6)	-0.0035 (6)
C2	0.0336 (9)	0.0272 (9)	0.0338 (9)	-0.0038 (7)	-0.0015 (7)	0.0037 (7)
C3	0.0342 (9)	0.0223 (9)	0.0452 (10)	0.0013 (7)	-0.0030 (8)	-0.0014 (7)
C4	0.0323 (9)	0.0284 (9)	0.0402 (10)	0.0022 (7)	0.0003 (7)	-0.0094 (7)
C5	0.0292 (8)	0.0296 (9)	0.0283 (8)	-0.0014 (7)	0.0000 (7)	-0.0052 (7)
C6	0.0239 (7)	0.0231 (8)	0.0267 (8)	-0.0042 (6)	-0.0013 (6)	-0.0028 (6)
C7	0.0260 (8)	0.0260 (9)	0.0254 (8)	-0.0051 (7)	0.0023 (6)	-0.0018 (6)
C8	0.0366 (9)	0.0315 (9)	0.0241 (8)	-0.0049 (7)	0.0048 (7)	0.0037 (7)
C9	0.0319 (9)	0.0327 (10)	0.0259 (8)	0.0010 (7)	0.0017 (7)	0.0056 (7)
C10	0.0400 (10)	0.0462 (12)	0.0386 (10)	-0.0019 (9)	-0.0007 (8)	-0.0081 (9)
C11	0.0237 (7)	0.0225 (8)	0.0249 (8)	-0.0048 (6)	0.0007 (6)	-0.0036 (6)
C12	0.0251 (8)	0.0273 (9)	0.0237 (8)	-0.0033 (7)	0.0001 (6)	-0.0002 (6)

supplementary materials

C13	0.0258 (8)	0.0239 (8)	0.0262 (8)	-0.0030 (6)	0.0000 (6)	0.0003 (6)
C14	0.0339 (9)	0.0300 (9)	0.0255 (8)	0.0023 (7)	-0.0005 (7)	0.0028 (7)
C15	0.0401 (10)	0.0343 (10)	0.0309 (9)	0.0022 (8)	0.0034 (7)	-0.0056 (7)
C16	0.0319 (9)	0.0248 (9)	0.0441 (10)	0.0013 (7)	-0.0018 (7)	-0.0034 (7)
C17	0.0361 (9)	0.0258 (9)	0.0380 (9)	-0.0011 (7)	-0.0066 (7)	0.0070 (7)
C18	0.0378 (9)	0.0292 (9)	0.0265 (8)	-0.0036 (7)	-0.0006 (7)	0.0021 (7)
Geometric param	neters (Å, °)					
O1—C7		1.2318 (18)	С7—	-C11	1.50	01 (2)
O2—C12		1.2223 (18)	C8-	-С9	1.49	97 (2)
N1—C7		1.361 (2)	C8-	-H8A	0.97	700
N1-C1		1.418 (2)	C8-	-H8B	0.97	700
N1—C8		1.4641 (19)	C9–	-C10	1.30	07 (2)
N2—C11		1.2915 (19)	C9–	-H9	0.93	300
N2—N3		1.3584 (18)	C10	—H10A	0.93	300
N3—C12		1.371 (2)	C10	-H10B	0.93	300
N3—H3		0.883 (18)	C12	C13	1.49	93 (2)
C1—C2		1.377 (2)	C13	C18	1.39	94 (2)
C1—C6		1.402 (2)	C13	C14	1.39	96 (2)
C2—C3		1.392 (2)	C14	C15	1.38	83 (2)
С2—Н2		0.9300	C14	—H14	0.93	300
C3—C4		1.389 (2)	C15	C16	1.38	83 (2)
С3—НЗА		0.9300	C15	—Н15	0.93	300
C4—C5		1.388 (2)	C16	—C17	1.38	83 (2)
C4—H4		0.9300	C16	—H16	0.93	300
C5—C6		1.387 (2)	C17	C18	1.38	80 (2)
С5—Н5		0.9300	C17	—H17	0.93	300
C6—C11		1.453 (2)	C18	—H18	0.93	300
C7—N1—C1		110.61 (12)	С9-	-C8—H8B	109	0.3
C7—N1—C8		122.50 (13)	H8A	—С8—Н8В	108.0	
C1—N1—C8		126.35 (14)	C10	C9C8	C8 123.28 (16)	
C11—N2—N3		115.52 (13)	C10	—С9—Н9	118	5.4
N2—N3—C12		120.10 (13)	C8–	-С9—Н9	118	5.4
N2—N3—H3		117.1 (11)	C9–	-C10—H10A	120	0.0
C12—N3—H3		122.8 (11)	C9–	-C10—H10B	120	0.0
C2—C1—C6		121.98 (15)	H10	А—С10—Н10В	120	0.0
C2—C1—N1		128.60 (15)	N2-	-C11C6	126	5.25 (14)
C6—C1—N1		109.42 (14)	N2-	-C11C7	127	7.48 (14)
C1—C2—C3		117.11 (15)	C6–	-C11—C7	106	5.27 (13)
C1—C2—H2		121.4	02–	-C12-N3	122	2.15 (15)
C3—C2—H2		121.4	02–	-C12C13	123	.06 (14)
C4—C3—C2		121.89 (16)	N3-	-C12C13	114	.77 (13)
C4—C3—H3A		119.1	C18		118	5.77 (15)
C2—C3—H3A		119.1	C18		117	7.67 (14)
C5—C4—C3		120.37 (16)	C14		123	5.55 (14)
С5—С4—Н4		119.8	C15		120	0.38 (15)
C3—C4—H4		119.8	C15		119	9.8
C6—C5—C4		118.56 (15)	C13		119	.8

С6—С5—Н5	120.7	C14—C15—C16	120.05 (16)
С4—С5—Н5	120.7	C14—C15—H15	120.0
C5—C6—C1	120.06 (15)	С16—С15—Н15	120.0
C5—C6—C11	132.96 (15)	C17—C16—C15	120.14 (16)
C1—C6—C11	106.97 (13)	С17—С16—Н16	119.9
O1—C7—N1	126.09 (14)	С15—С16—Н16	119.9
O1—C7—C11	127.17 (14)	C18—C17—C16	119.95 (16)
N1—C7—C11	106.74 (13)	С18—С17—Н17	120.0
N1—C8—C9	111.54 (13)	С16—С17—Н17	120.0
N1—C8—H8A	109.3	C17—C18—C13	120.69 (15)
С9—С8—Н8А	109.3	C17—C18—H18	119.7
N1—C8—H8B	109.3	C13—C18—H18	119.7
C11—N2—N3—C12	179.73 (14)	N3—N2—C11—C7	-0.3 (2)
C7—N1—C1—C2	-178.87 (15)	C5-C6-C11-N2	0.6 (3)
C8—N1—C1—C2	9.5 (3)	C1—C6—C11—N2	179.33 (14)
C7—N1—C1—C6	0.38 (17)	C5—C6—C11—C7	-178.78 (16)
C8—N1—C1—C6	-171.30 (14)	C1—C6—C11—C7	-0.03 (16)
C6—C1—C2—C3	0.7 (2)	O1-C7-C11-N2	1.9 (3)
N1—C1—C2—C3	179.84 (15)	N1-C7-C11-N2	-179.10 (14)
C1—C2—C3—C4	1.1 (2)	O1—C7—C11—C6	-178.79 (15)
C2—C3—C4—C5	-1.7 (3)	N1—C7—C11—C6	0.26 (16)
C3—C4—C5—C6	0.4 (2)	N2—N3—C12—O2	4.0 (2)
C4—C5—C6—C1	1.4 (2)	N2—N3—C12—C13	-177.63 (12)
C4—C5—C6—C11	179.98 (16)	O2—C12—C13—C18	11.9 (2)
C2—C1—C6—C5	-1.9 (2)	N3—C12—C13—C18	-166.38 (14)
N1-C1-C6-C5	178.75 (13)	O2-C12-C13-C14	-167.09 (15)
C2-C1-C6-C11	179.12 (14)	N3-C12-C13-C14	14.6 (2)
N1—C1—C6—C11	-0.19 (16)	C18—C13—C14—C15	0.8 (2)
C1—N1—C7—O1	178.68 (15)	C12—C13—C14—C15	179.84 (15)
C8—N1—C7—O1	-9.3 (2)	C13-C14-C15-C16	0.0 (3)
C1—N1—C7—C11	-0.38 (16)	C14—C15—C16—C17	-0.6 (3)
C8—N1—C7—C11	171.67 (13)	C15-C16-C17-C18	0.4 (3)
C7—N1—C8—C9	-83.08 (19)	C16—C17—C18—C13	0.5 (3)
C1—N1—C8—C9	87.67 (19)	C14—C13—C18—C17	-1.1 (2)
N1—C8—C9—C10	119.36 (18)	C12—C13—C18—C17	179.85 (14)
N3—N2—C11—C6	-179.51 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3…O1	0.88 (2)	1.98 (2)	2.721 (2)	141 (2)

Fig. 1